• Postdoctoral researcher at IRIT | Inverse Problems in optical microscopy • PhD in Astrophysics | Large-scale structures and galaxy evolution from imaging survey
In February 2024, I started as a postdoctoral researcher at IRIT in the MAMBO team. I work with Pierre Weiss as part of the MicroBlind ANR project.
I study inverse problems in optical microscopy, currently carrying two main projects:
Deep learning for blind deblurring of fluorescence microscopy images.
Neural networks for instance segmentation of individuals cells in images biological sample with partial annotations.
Over the course of my career in Astrophysics (PhD 2018), I have developped a strong interest in inverse problem solving via a Bayesian approach while studying galaxy evolution using large photometric surveys. This led me to take a position in the MAMBO team to further explore inverse problem solving in high dimensions in a different context.
I still work part-time on my research in Astrophysics. There, I mainly study the evolution of star-formation in galaxies through cosmic time. I am interested in understanding the role played by the environment surrounding galaxies on large scales on their history and their fate. I am still actively invested in several international collaborations (Euclid, XCLASS).
"Galaxy morphologies and shape orientations are expected to correlate with their large-scale environment, since they grow by accreting matter from the cosmic web and are subject to interactions with other galaxies. Cosmic filaments are extracted in projection from the Euclid Quick Data Release 1 (covering 63.1 deg2) at 0.510^10M⊙) in the projected cosmic web is analysed as a function of morphology measured from VIS data. Specifically, the 2D alignment of galaxy shapes with large-scale filaments is quantified as a function of Sérsic indices and masses. We find the known trend that more massive galaxies are closer to filament spines. At fixed stellar masses, morphologies correlate both with densities and distances to large-scale filaments. In addition, the large volume of this data set allows us to detect a signal indicating that there is a preferential alignment of the major axis of massive early-type galaxies along projected cosmic filaments. Overall, these results demonstrate our capabilities to carry out detailed studies of galaxy environments with Euclid, which will be extended to higher redshift and lower stellar masses with the future Euclid Deep Survey."
@article{Laigle2025,author={{Euclid Collaboration} and {C. Laigle , C. Gouin} and {Sarron}, Florian and {Quilley}, L. and {Pichon}, C. and {Kraljic}, K. and {Durret}, F. and {Chisari}, N.~E. and {Kuchner}, U. and {Malavasi}, N. and {Magliocchetti}, M. and {McCracken}, H.~J. and {Sorce}, J.~G. and {Kang}, Y. and {McPartland}, C.~J.~R. and {Toft}, S. and {Aghanim}, N. and {Altieri}, B. and {Amara}, A. and {Andreon}, S. and {Auricchio}, N. and {Aussel}, H. and {Baccigalupi}, C. and {Baldi}, M. and {Balestra}, A. and {Bardelli}, S. and {Basset}, A. and {Battaglia}, P. and {Bernardeau}, F. and {Biviano}, A. and {Bonchi}, A. and {Branchini}, E. and {Brescia}, M. and {Brinchmann}, J. and {Camera}, S. and {Ca{\~n}as-Herrera}, G. and {Capobianco}, V. and {Carbone}, C. and {Carretero}, J. and {Casas}, S. and {Castellano}, M. and {Castignani}, G. and {Cavuoti}, S. and {Chambers}, K.~C. and {Cimatti}, A. and {Colodro-Conde}, C. and {Congedo}, G. and {Conselice}, C.~J. and {Conversi}, L. and {Copin}, Y. and {Courbin}, F. and {Courtois}, H.~M. and {Cropper}, M. and {Da Silva}, A. and {Degaudenzi}, H. and {de la Torre}, S. and {De Lucia}, G. and {Di Giorgio}, A.~M. and {Dolding}, C. and {Dole}, H. and {Dubath}, F. and {Duncan}, C.~A.~J. and {Dupac}, X. and {Ealet}, A. and {Escoffier}, S. and {Farina}, M. and {Farinelli}, R. and {Faustini}, F. and {Ferriol}, S. and {Finelli}, F. and {Fotopoulou}, S. and {Frailis}, M. and {Franceschi}, E. and {Galeotta}, S. and {George}, K. and {Gillard}, W. and {Gillis}, B. and {Giocoli}, C. and {G{\'o}mez-Alvarez}, P. and {Gracia-Carpio}, J. and {Granett}, B.~R. and {Grazian}, A. and {Grupp}, F. and {Gwyn}, S. and {Haugan}, S.~V.~H. and {Hoekstra}, H. and {Holmes}, W. and {Hook}, I.~M. and {Hormuth}, F. and {Hornstrup}, A. and {Hudelot}, P. and {Jahnke}, K. and {Jhabvala}, M. and {Joachimi}, B. and {Keih{\"a}nen}, E. and {Kermiche}, S. and {Kiessling}, A. and {Kilbinger}, M. and {Kubik}, B. and {Kuijken}, K. and {K{\"u}mmel}, M. and {Kunz}, M. and {Kurki-Suonio}, H. and {Le Boulc'h}, Q. and {Le Brun}, A.~M.~C. and {Le Mignant}, D. and {Liebing}, P. and {Ligori}, S. and {Lilje}, P.~B. and {Lindholm}, V. and {Lloro}, I. and {Mainetti}, G. and {Maino}, D. and {Maiorano}, E. and {Mansutti}, O. and {Marcin}, S. and {Marggraf}, O. and {Martinelli}, M. and {Martinet}, N. and {Marulli}, F. and {Massey}, R. and {Maurogordato}, S. and {Medinaceli}, E. and {Mei}, S. and {Melchior}, M. and {Mellier}, Y. and {Meneghetti}, M. and {Merlin}, E. and {Meylan}, G. and {Mora}, A. and {Moresco}, M. and {Moscardini}, L. and {Nakajima}, R. and {Neissner}, C. and {Niemi}, S. -M. and {Nightingale}, J.~W. and {Padilla}, C. and {Paltani}, S. and {Pasian}, F. and {Pedersen}, K. and {Percival}, W.~J. and {Pettorino}, V. and {Pires}, S. and {Polenta}, G. and {Poncet}, M. and {Popa}, L.~A. and {Pozzetti}, L. and {Raison}, F. and {Rebolo}, R. and {Renzi}, A. and {Rhodes}, J. and {Riccio}, G. and {Romelli}, E. and {Roncarelli}, M. and {Rusholme}, B. and {Saglia}, R. and {Sakr}, Z. and {S{\'a}nchez}, A.~G. and {Sapone}, D. and {Sartoris}, B. and {Schewtschenko}, J.~A. and {Schirmer}, M. and {Schneider}, P. and {Schrabback}, T. and {Scodeggio}, M. and {Secroun}, A. and {Seidel}, G. and {Seiffert}, M. and {Serrano}, S. and {Simon}, P. and {Sirignano}, C. and {Sirri}, G. and {Skottfelt}, J. and {Stanco}, L. and {Steinwagner}, J. and {Tallada-Cresp{\'\i}}, P. and {Taylor}, A.~N. and {Teplitz}, H.~I. and {Tereno}, I. and {Tessore}, N. and {Toledo-Moreo}, R. and {Torradeflot}, F. and {Tutusaus}, I. and {Valenziano}, L. and {Valiviita}, J. and {Vassallo}, T. and {Verdoes Kleijn}, G. and {Veropalumbo}, A. and {Wang}, Y. and {Weller}, J. and {Zacchei}, A. and {Zamorani}, G. and {Zerbi}, F.~M. and {Zinchenko}, I.~A. and {Zucca}, E. and {Allevato}, V. and {Ballardini}, M. and {Bolzonella}, M. and {Bozzo}, E.},title={{Euclid Quick Data Release (Q1). Galaxy shapes and alignments in the cosmic web}},journal={arXiv e-prints},keywords={Astrophysics - Astrophysics of Galaxies, Astrophysics - Cosmology and Nongalactic Astrophysics},year={2025},month=mar,eid={arXiv:2503.15333},pages={arXiv:2503.15333},archiveprefix={arXiv},eprint={2503.15333},primaryclass={astro-ph.GA},adsurl={https://ui.adsabs.harvard.edu/abs/2025arXiv250315333E},adsnote={Provided by the SAO/NASA Astrophysics Data System},}
arXiv
Euclid Quick Data Release (Q1). The role of cosmic connectivity in shaping galaxy clusters
Euclid Collaboration , C. Gouin , C. Laigle , Florian Sarron, and 196 more authors
The matter distribution around galaxy clusters is distributed over several filaments, reflecting their positions as nodes in the large-scale cosmic web. The number of filaments connected to a cluster, namely its connectivity, is expected to affect the physical properties of clusters. Using the first Euclid galaxy catalogue from the Euclid Quick Release 1 (Q1), we investigate the connectivity of galaxy clusters and how it correlates with their physical and galaxy member properties. Around 220 clusters located within the three fields of Q1 (covering ∼63 deg2), are analysed in the redshift range 0.210^10.3 M⊙). In agreement with previous measurements, we recover the mass-connectivity relation independently of the filament detection algorithm, showing that the most massive clusters are, on average, connected to a larger number of cosmic filaments, consistent with hierarchical structure formation models. Furthermore, we explore possible correlations between connectivities and two cluster properties: the fraction of early-type galaxies and the Sérsic index of galaxy members. Our result suggests that the clusters populated by early-type galaxies exhibit higher connectivity compared to clusters dominated by late-type galaxies. These preliminary investigations highlight our ability to quantify the impact of the cosmic web connectivity on cluster properties with Euclid.
@article{Gouin2025,author={{Euclid Collaboration} and {C. Gouin , C. Laigle} and {Sarron}, Florian and {Bonnaire}, T. and {Sorce}, J.~G. and {Aghanim}, N. and {Magliocchetti}, M. and {Quilley}, L. and {Boldrini}, P. and {Durret}, F. and {Pichon}, C. and {Kuchner}, U. and {Malavasi}, N. and {Kraljic}, K. and {Gavazzi}, R. and {Kang}, Y. and {Stanford}, S.~A. and {Awad}, P. and {Altieri}, B. and {Amara}, A. and {Andreon}, S. and {Auricchio}, N. and {Aussel}, H. and {Baccigalupi}, C. and {Baldi}, M. and {Balestra}, A. and {Bardelli}, S. and {Basset}, A. and {Battaglia}, P. and {Bernardeau}, F. and {Biviano}, A. and {Bonchi}, A. and {Branchini}, E. and {Brescia}, M. and {Brinchmann}, J. and {Camera}, S. and {Ca{\~n}as-Herrera}, G. and {Capobianco}, V. and {Carbone}, C. and {Carretero}, J. and {Castellano}, M. and {Castignani}, G. and {Cavuoti}, S. and {Chambers}, K.~C. and {Cimatti}, A. and {Colodro-Conde}, C. and {Congedo}, G. and {Conselice}, C.~J. and {Conversi}, L. and {Copin}, Y. and {Courbin}, F. and {Courtois}, H.~M. and {Cropper}, M. and {Da Silva}, A. and {Degaudenzi}, H. and {de la Torre}, S. and {De Lucia}, G. and {Di Giorgio}, A.~M. and {Dolding}, C. and {Dole}, H. and {Dubath}, F. and {Duncan}, C.~A.~J. and {Dupac}, X. and {Ealet}, A. and {Escoffier}, S. and {Fabricius}, M. and {Farina}, M. and {Faustini}, F. and {Ferriol}, S. and {Finelli}, F. and {Fotopoulou}, S. and {Frailis}, M. and {Franceschi}, E. and {Galeotta}, S. and {George}, K. and {Gillis}, B. and {Giocoli}, C. and {G{\'o}mez-Alvarez}, P. and {Gracia-Carpio}, J. and {Granett}, B.~R. and {Grazian}, A. and {Grupp}, F. and {Gwyn}, S. and {Haugan}, S.~V.~H. and {Holmes}, W. and {Hook}, I.~M. and {Hormuth}, F. and {Hornstrup}, A. and {Hudelot}, P. and {Jahnke}, K. and {Jhabvala}, M. and {Joachimi}, B. and {Keih{\"a}nen}, E. and {Kermiche}, S. and {Kiessling}, A. and {Kilbinger}, M. and {Kubik}, B. and {K{\"u}mmel}, M. and {Kunz}, M. and {Kurki-Suonio}, H. and {Lahav}, O. and {Le Boulc'h}, Q. and {Le Brun}, A.~M.~C. and {Le Mignant}, D. and {Liebing}, P. and {Ligori}, S. and {Lilje}, P.~B. and {Lindholm}, V. and {Lloro}, I. and {Mainetti}, G. and {Maino}, D. and {Maiorano}, E. and {Mansutti}, O. and {Marcin}, S. and {Marggraf}, O. and {Martinelli}, M. and {Martinet}, N. and {Marulli}, F. and {Massey}, R. and {Maurogordato}, S. and {McCracken}, H.~J. and {Medinaceli}, E. and {Mei}, S. and {Mellier}, Y. and {Meneghetti}, M. and {Merlin}, E. and {Meylan}, G. and {Mora}, A. and {Moresco}, M. and {Moscardini}, L. and {Nakajima}, R. and {Neissner}, C. and {Niemi}, S. -M. and {Nightingale}, J.~W. and {Padilla}, C. and {Paltani}, S. and {Pasian}, F. and {Peacock}, J.~A. and {Pedersen}, K. and {Percival}, W.~J. and {Pettorino}, V. and {Pires}, S. and {Polenta}, G. and {Poncet}, M. and {Popa}, L.~A. and {Pozzetti}, L. and {Raison}, F. and {Rebolo}, R. and {Renzi}, A. and {Rhodes}, J. and {Riccio}, G. and {Romelli}, E. and {Roncarelli}, M. and {Rusholme}, B. and {Saglia}, R. and {Sakr}, Z. and {S{\'a}nchez}, A.~G. and {Sapone}, D. and {Sartoris}, B. and {Schewtschenko}, J.~A. and {Schirmer}, M. and {Schneider}, P. and {Schrabback}, T. and {Scodeggio}, M. and {Secroun}, A. and {Seidel}, G. and {Serrano}, S. and {Simon}, P. and {Sirignano}, C. and {Sirri}, G. and {Skottfelt}, J. and {Stanco}, L. and {Steinwagner}, J. and {Tallada-Cresp{\'\i}}, P. and {Tavagnacco}, D. and {Taylor}, A.~N. and {Teplitz}, H.~I. and {Tereno}, I. and {Tessore}, N. and {Toft}, S. and {Toledo-Moreo}, R. and {Torradeflot}, F. and {Tsyganov}, A. and {Tutusaus}, I. and {Valenziano}, L. and {Valiviita}, J. and {Vassallo}, T. and {Verdoes Kleijn}, G. and {Veropalumbo}, A. and {Wang}, Y. and {Weller}, J. and {Zacchei}, A. and {Zamorani}, G. and {Zerbi}, F.~M. and {Zucca}, E. and {Allevato}, V. and {Ballardini}, M. and {Bolzonella}, M. and {Bozzo}, E.},title={{Euclid Quick Data Release (Q1). The role of cosmic connectivity in shaping galaxy clusters}},journal={arXiv e-prints},keywords={Astrophysics - Cosmology and Nongalactic Astrophysics},year={2025},month=mar,eid={arXiv:2503.15332},pages={arXiv:2503.15332},archiveprefix={arXiv},eprint={2503.15332},primaryclass={astro-ph.CO},adsurl={https://ui.adsabs.harvard.edu/abs/2025arXiv250315332E},adsnote={Provided by the SAO/NASA Astrophysics Data System},}